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A flux coordinate representation for the magnetic field is used to 
derive a system of simultaneous linear equations for accurately com- 
puting the rotational transform and the poloidal angle stream function 
for a given magnetic flux surface in a toroidal stellarator configuration. 
The procedure is useful for converting an arbitrary flux coordinate 
system into one for which all magnetic field lines are straight. It is quite 
general and requires only that the flux surfaces can be represented by 
double Fourier series of the coordinates R and Z and that values of the 
cylindrical components of the magnetic field are available on each 
surface. Numerical results obtained for vacuum configurations of the 
Advanced Toroidal Facility (ATF) show that the present procedure is 
more accurate and convenient than previous methods. ( 1992 Academic 
Press, Inc. 

1. INTRODUCTION 

In toroidal plasma systems, it is often useful or necessary 
to perform computations in a magnetic flux coordinate 
system, where the magnetic field lines are straight. An 
example requiring such a coordinate system is the estimation 
of magnetic island widths due to field perturbations in a 
toroidal stellarator system [ 1, 21. While coordinate systems 
in which the field lines are straight are not unique [3,4], we 
present a simple numerical method of determining one such 
specific coordinate system for which the toroidal angle 
coordinate is simply the cylindrical angle. 

It is assumed that a system of three-dimensional (3D), 
nested flux surfaces exists in an otherwise arbitrary toroidal 
magnetic configuration. These surfaces can be represented 
by a double Fourier series of the form 

R(P> R4) = c R?m(P) come - 41, (1) 
m, 12 

Z(P, 0, d) = 1 -G,(P) sinbe -a#), (2) 
m, II 
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where (R, c+$ Z) are cylindrical coordinates. In these equa- 
tions, the variable 0 is a parametric coordinate representing 
a poloidal angle, and p is a radial coordinate which is a 
single-valued function of the toroidal flux @ and satisfies 
B.Vp=O. 

The magnetic field B can be represented in a contra- 
variant vector form as 

B=V@xVB, (3) 

vg=ve*-l(p)vd, (4) 

e* = e + qp, e, d), (5) 

where L(p, 0, 4) is a stream function, which defines a 
mapping from 8 to a new poloidal angle 0*. Equations (3) 
and (4) yield 

B”/B” = I( p ), (6) 

where B’* = B . V8* and B” 3 B Vd are the contravariant 
poloidal and toroidal components of B, respectively, in the 
(p, Q*, 4) coordinate system. Since the equation defining a 
field line is 

de* Be* -=- 
d4 B” ’ 

it follows that, along a field line, 

(7) 

de* 
- = z(p). 
db 

(8) 

Thus, field lines are straight in the (p, 8*, 4) coordinate 
system. 

A method of evaluating the Fourier representation for the 
stream function 

4 P, e,4) = C L,( PI sinbe - 44 
lT2.n 

(9) 
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is given in Ref. [S]. However, this method is numerically 
cumbersome, and a high degree of accuracy is not easy to 
achieve, since it requires the Jacobian of the transformation 
from (R, 4, 2) to (p, 0,d) and the corresponding metric 
tensor elements, which involve radial derivatives aR/ap and 
aZ/ap. Thus, one must obtain the Fourier representations 
given by Eqs. (1) and (2) not only for the surface(s) of 
interest, but also for neighboring surfaces. 

The purpose of this paper is to describe an alternative 
procedure of evaluating i,,(p), which relies on a knowledge 
of cylindrical components of the magnetic field, rather than 
aR/ap and aZ/ap, on the flux surface. Both of these methods 
require availability of the flux surface representation in the 
form of Eqs. (1) and (2). Note that the variable 0 in this 
representation is quite general in that it can be any coor- 
dinate representing a poloidal angle, although 8 used in 
Ref. [S] is chosen such that the Fourier series given by 
Eqs. (1) -and (2) are most compact and f3 used in the 
numerical examples in the present study (Section 3) is taken 
to be the ordinary geometric poloidal angle. 

2. NEW METHOD 

To describe a simpler and potentially more accurate 
method of determining k,,(p), we employ the following 
expressions for the contravariant components of B: 

aR aR 
BR= BBz$ B$, 

az az 
Bz=BetJ+B4%. 

(10) 

(11) 

(12) 

(13) 

In these equations, it is assumed that not only is the flux sur- 
face geometry known from Eqs. (1) and (2), but also the 
cylindrical components of B, ( BR, B”, BZ), and the toroidal 
flux, Q(p), are known. Thus, it is possible to obtain I and I 
from these equations. The resulting partial differential 
equation is 

(14) 

where 

(15) 

t=$($-$)+g($-$). (16) 

Note that Eqs. (12) and (13) are redundant in the sense that 
Be/B” can be obtained from either one of them. The 
particular form of B’/B+ = l/gee given in Eq. (14) is 
especially useful, since it avoids potential numerical 
problems near extrema where aR/ae = 0 or aZ/ad = 0. This 
is apparent since go, # 0 (arc length derivative), and hence 
no zeroes occur in the denominator of the expression for 
B’/B”. In Eq. (14), the quantities 5 and g,, are assumed to 
be known. 

Substitution of the Fourier series for aL/% and an/ad 
derived from Eq. (9) into Eq. (14) yields 

t(P) gee + C (~AP)(Weo-m4) wme-m= 5. (17) 
m,n 

To determine the unknown variables r and A,,,,,, we multiply 
both sides of Eq. (17) by cos(@ - VC$) and average over the 
domain 0 d 8 6 2n and 0 < 4 6 27~ This yields a system of 
linear simultaneous equations for I and A,,, 

where 

aq p) + c bp,,( p) = cP”, 
m,n 

(18) 

d”= (geec0s(Pe-v9)), (19) 

bKn = ((ng,, - ~25) cos(me - ~24) COS($ - V(b)), (20) 

cpv= gc0+e-v~)), (21) 

(22) 

The set ( ,L, v) is chosen to coincide with (m, n), and includes 
the (0,O) term for determining z. Then, Eq. (17) gives the 
same number of independent equations as the number of 
unknowns r and A,,,,, allowing I and A,,,, to be determined 
uniquely. 

3. NUMERICAL TEST RESULTS 

To examine the numerical accuracy and utility of the 
method based on Eq. (18) and to compare them with those 
of the method described in Ref. [S], we have used both 
procedures to evaluate r(p) and L,,(p) for the configuration 
of the Advanced Toroidal Facility (ATF). Here we choose 
the poloidal variable 0 to be the ordinary geometric angle: 

8 = tan-‘[(Z- Z,)/(R- R,)], (23) 

where (R,, Z,) is the magnetic axis position. The radial 
coordinate is defined by 

p = (@/nB,)“*, (24) 

where @ is the toroidal magnetic flux and B. is the average 
magnetic field at the axis, p = 0. Note that our choice of p 
by Eq. (24) closely approximates the average minor radius 
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TABLE I 
Numerical Values of p, 1, and dQ* for Flux Surfaces near 

the Rational Surface with t = $ 

I d0*(deg) 

Surface p(cm) Exact Eq. (18) Ref. [S] Eq. (18) Ref. [5] 

1 18.10 0.52405 0.52395 0.52425 0.03 15 0.0158 
2 17.81 0.51664 0.51657 0.51682 0.0235 0.0159 
3 17.53 0.50929 0.50918 0.50941 0.0295 0.0223 
4 17.23 0.50206 0.50199 0.50216 0.0253 0.0310 
5 17.15 0.5OOW 0.49992 0.50010 0.0240 0.0343 
6 17.06 0.49797 0.49790 0.49806 0.0221 0.0397 
I 16.76 0.49086 0.49077 0.49094 0.0269 0.0460 
8 16.47 0.48434 0.48428 0.48441 0.0200 0.0524 
9 16.11 0.47779 0.47770 0.47786 0.0266 0.0562 

for essentially any toroidal device and not just that of the 
ATF. Along a field line on the flux surface p, we let 

e*(d) = e*t401+ 4P)(d - dOI> (25) 

e:(d) = d(4) + c L,(p) sinCme(4) - n41. (26) 
,,z, II 

A measure of accuracy of the computed J,,(p) is 
provided by the rms value deviation of 0:(d) from e*(4): 

Ad* = ([O,*(d) - O*(#)]2)‘i2. (27) 

Table I lists two sets of numerical results for I and At?* at 
nine flux surfaces near the rational surface with i = 4; one set 
was obtained by solving Eq. (18) and the other with the 
method described in Ref. [S]. The exact values of I were 
determined by following field lines at least 1000 turns 
around the major axis through numerical integration of the 
field line equations. Values of AB* were calculated by 
following field lines on the flux surfaces four turns around 
the major axis. Table II gives similar results evaluated at 
nine surfaces near the rational surface with i= 4. The choice 
of (m, n) modes included in the sums of Eqs (1 ), (2), (9), and 

TABLE II 

Numerical Values of p, 1, and LIB* for Flux Surfaces near 
the Rational Surface with I = i 

I d0*(deg) 

Surface p(cm) Exact Eq. (18) Ref. [S] Eq. (18) Ref. [S] 

1 8.49 0.34605 0.34598 0.34598 0.0263 0.0479 
2 7.86 0.34034 0.34027 0.34050 0.0271 0.0369 
3 7.28 0.33559 0.33550 0.33592 0.0279 0.0270 
4 7.14 0.33447 0.33438 0.33484 0.0286 0.0261 
5 7.00 0.33338 0.33328 0.33377 0.0289 0.0246 
6 6.86 0.33230 0.33221 0.33272 0.0291 0.0248 
7 6.7 1 0.33124 0.33115 0.33167 0.0297 0.0258 
8 6.03 0.32654 0.32642 0.32693 0.0372 0.0385 
9 4.73 0.31902 0.31897 0.31877 0.0418 0.0691 

TABLE III 
Numerical Values of 1, and A@* Evaluated with 

the Method of Ref. [S] 

i,,,,, = 0.5OoOO ‘wm = 0.33338 

Surfaces used NFUrl K I dfI*(deg) i 30*(deg) 

l-9 9 4 0.50018 0.0696 0.33336 0.2006 
l-9 9 3 0.50017 0.0844 0.33335 0.2345 
l-9 9 2 0.50035 0.03 17 0.33354 0.1203 
2--8 7 3 0.50004 0.1156 0.33343 0.0215 
2-8 I 2 0.50028 0.0456 0.33340 0.1965 

l-3,5,7-9 1 3 0.50019 0.0614 0.33335 0.2417 
l-3,5,7-9 7 2 0.50035 0.0262 0.33354 0.1226 

3-l 5 3 0.49984 0.9206 0.33343 0.0252 
3-7 5 2 0.50014 0.0916 0.33342 0.0257 

2, 3, 5, 7, 8 5 3 0.50007 0.0358 0.33342 0.0226 
2,3,5,7,8 5 2 0.50029 0.0324 0.33340 0.2003 

46 3 1 0.49985 0.8711 0.33343 0.0255 
3, 5, 7 3 1 0.50005 0.0395 0.33341 0.026 I 

-..__ 

(26) was based on the requirement R:,,(p)+ Z:,(p)> 
10 lo m* for the rational surface of interest (I % & or $), and 
the same modes were used for all other surfaces in the 
vicinity. The number of modes selected in this way is 55 for 
surfaces in Table I and 57 for surfaces in Table II. As 
mentioned earlier, the method of Ref. [S] involves the 
derivatives dR,,(p)/dp and dZ,,(p)/dp, and therefore we 
have chosen enough numbers of the flux surfaces near the 
two rational surfaces to ensure a highest available accuracy 
at the surfaces of interest (surface 5 in Tables I and II). The 
radial derivatives were evaluated using least-squares poly- 
nomial approximation routines in the NAG Library with 
K = 4, where K is the highest degree of the polynomials. 
Numerical values of i and Ad* listed in Table III were 
obtained using the method of Ref. [S] at the two surfaces 
(2 z 4, f) as in Tables I and II, but many different sets of 
surfaces and different values of K where tried to show that 
the accuracy of the method of Ref. [S] is sensitive to 
the approximation scheme used to evaluate the radial 
derivatives of R and Z. In the Table III entries under 
“Surfaces used” show the surface numbers (labels) given in 
Tables I and II for the surfaces with I z 4 and f, respectively, 
and Nsurl means the total number of surfaces used. 

In Fig. 1, poloidal angles 0(d), e*(4), and e,*(4) are 
plotted versus 4 along a field line on the rational surface 
with z = i. Numerical values of e,*(4), obtained at 1728 
equally spaced points of 4, are shown as small dots, but they 
are so close to the corresponding values of 0*(d) (the 
straight line given by Eq. (25)) that the difference between 
e,*(4) and e*(4) can hardly be seen on the scale of the figure. 
The 55 values of n,,(p) determined by solving Eq. (18) 
were used for e,*(b). Figure 2 shows the difference 
0,*(d) - 0*(d) evaluated with the same n,,,(p) and along the 
same field line as in the case of Fig. 1. 
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FIG. 1. Poloidal angles 8, 8* (Eq. (25)), and 0,* (Eq. (26)) are shown 
as functions of 4 along a field line on the rational flux surface with I = i. 
The numerical values of l?$ (dots) are so close to the corresponding values 
of 6* (straight line) that the difference is hard to see on this scale. 

We conclude this section with some remarks concerning 
the numerical procedure used to determine the Fourier 
representations for the flux surfaces given in Tables I and II, 
in particular, for the two rational surfaces with I z f and 3. 
To evaluate Fourier coefficients in Eqs. (1) and (2), we used 
240 reasonably uniformly distributed Poincare puncture 
points at each of 16 equally spaced toroidal planes in a 
single field period, 0 d 4 < 27c/Nfp, where yfp = 12 is the 
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FIG. 2. The error of 6,* vs 4 along the same field line as in Fig. 1. 
Values of I,,(p) determined by solving Eq. (18) were used to evaluate 0:. 

number of field periods. The coefficients were computed by 
applying a least-squares fitting method to these 240 x 16 
data points. For a low-order rational surface, obtaining 
such flux surface points by following a field line presents 
some numerical difficulties, since the field line closes on itself 
after m toroidal transits, if z = n/m. In our model of the ATF, 
however, we have observed that there are extremely small 
islands at the location of the surface with r = 4. The island 
formation is completed after 2396 toroidal transits along a 
field line, and the maximum island widths are no larger than 
2 mm. Although the two islands are far apart from each 
other (no x-points), their poloidal spread is wide enough to 
generate a complete flux surface, if puncture points from the 
12 topologically equivalent (symmetry) toroidal planes are 
combined (overlaid) to form a single flux surface at a given 
toroidal angle. The flux surface with r = f, on the other 
hand, could not be determined in a similar way, since no 
islands could be found. We chose, therefore, a surface very 
close to the one with z = i. It took 7152 toroidal transits to 
complete the surface, which means that the deviation of r 
from 4 is (3 x 7152))’ = 4.66 x lo-‘, or z = 0.3333799. We 
have not been able to identify the source(s) of islands with 
z= $. 

4. CONCLUDING REMARKS 

Two different methods of evaluating i,,(p) have been 
compared: one is based on Eq. (18) and the other is 
described in Ref. [S]. In general, the former is more 
accurate and more convenient than the latter, if the 
magnetic field is known in addition to the flux surface 
geometry. On the other hand, if the magnetic field is not 
known on each surface, the present method fails, and it is 
necessary to obtain Fourier representations of many sur- 
faces to evaluate radial derivatives of R and 2 for use in the 
method of Ref. [S]. Our numerical results, obtained for the 
ATF configuration, indicate that both methods are fairly 
straightforward to apply and no serious difficulties are 
expected to arise in the numerical procedure. Although our 
study is concerned with three-dimensional flux coordinate 
systems, the method is somewhat similar to a two-dimen- 
sional analysis of mapping from a rectangular to a harmonic 
representation developed by Schneider and Bateman [6]. 
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